Термическая обработка металлов

Промежуточные Тесты к теме 2.2

I. Какая обработка стальных изделий называется «улучшением»:

1. закалка;

2. закалка + низкий отпуск;

3. высокий отпуск;

4. закалка + высокий отпуск;

5. шлифовка поверхности.

II. Какая фаза должна обязательно присутствовать в стали при температуре ее нагрева под закалку:

1. мартенсит;

2. цементит;

феррит;

4. аустенит;

5. перлит.

III. Какая структура обеспечивает максимальную твердость доэвтектоидной стали:

1. перлит + феррит;

2. троостит;

3. мартенсит отпуска;

4. мартенсит;

5. сорбит отпуска.

IV. Какую структуру должна иметь ответственная деталь из среднеуглеродистой стали, работающая при динамических (ударных) нагрузках:

Виды термообработки

мартенсит;

2. феррит + перлит;

3. мартенсит + цементит вторичный;

4. мартенсит отпуска;

5. сорбит отпуска.

V. Полная закалка – это закалка стали из однофазного аустенитного состояния. Какая структура получается при полной закалке доэвтектоидных сталей:

1. мартенсит + цементит вторичный;

2. мартенсит;

3. феррит + перлит;

4. мартенсит +феррит;

5. аустенит.

VI. Для заэвтектоидных сталей применяют закалку из двухфазного состояния (неполную). Какую структуру должна иметь сталь У10 после такой закалки:

1. перлит + цементит вторичный (П + Ц II);

2. мартенсит (М);

3. аустенит + ЦII ;

4. М + ЦII;

5. М + феррит.

VII. Как изменяются прочность (sв) и ударная вязкость (KCU) с повышением температуры отпуска:

1. sв и KCU увеличиваются;

2. sв растет, KCU падает;

3. sв падает, KCU растет;

4. sв не изменяется, KCU растет;

5. sв и KCU уменьшаются.

VIII. Какое из перечисленных утверждений неверно?

Высокая твердость стали с мартенситной структурой обусловлена:

1. высокой плотностью мартенсита;

2. дисперсностью структуры;

3. пересыщением решетки мартенсита углеродом;

4. большим количеством дислокаций;

5. наличием сильных внутренних напряжений.

Стали, в которые специально вводятся примеси – легирующие элементы (см. ниже, раздел 2.3); очевидно, они еще дороже качественных углеродистых, поэтому экономически нецелесообразно использовать изделия из этих сталей в неупрочненном состоянии.

Обычно перед закалкой делается отжиг для улучшения структуры заготовок и облегчения механической обработки. Отжиг – нагрев стали до аустенитного состояния и последующее медленное охлаждение с печью, в результате чего формируется равновесная структура в стали в соответствии с диаграммой Fe–Ц.

Поскольку в до – и заэвтектоидных сталях помимо перлитного превращения (2.2.1) происходят изменения в структуре на линияхА3 и Асm диаграммы Fe–Ц, то и «С – диаграммы» этих сталей выглядят сложнее. Однако главные процессы, происходящие при закалке сталей, могут быть поняты с помощью наиболее простой диаграммы, приведенной на рис. 2.2.2.

Названия последних структур – по фамилиям исследователей: Sorby и Troost.

Это осуществляется использованием закалочных сред с различными охлаждающими способностями.

В общем случае под закалкой понимают сохранение высокотемпературного состояния с помощью быстрого охлаждения сплава.

Такой низкий предел растворимости С в α–Fe обусловлен отсутствием в ОЦК решетке феррита необходимых по размеру межатомных пустот для размещения атомов углерода.

Часто разные металлы и сплавы поддаются термической обработке. Это необходимо для изменения определенных свойств изделия, его структуры и пр. Одними из видов термической обработки являются закалка металла, термообработка сварных швов и соединений и пр.

 

Отметим, что обработка швов это один из этапов термообработки сварного изделия в целом. Об обработке швов и изделий под воздействием температур и поговорим дальше.

Термическая обработка: общие значения.

Сам процесс термической обработки металлических изделий в целом и соединений состоит из нескольких этапов:

  • подготовка металлических изделий к сварке;
  • термообработка собственно во время сварки;
  • обработка уже готового изделия и швов.

Для чего необходима термическая обработка сварных изделий?

Улучшение стали

Отметим, что необходимость термической обработки всех сварных изделий обуславливается потребностью улучшить сварные свойства материала.

Исходя из этого, перед сваркой изделия, металл должен пройти процесс отжига и высокого отпуска. Приведем пример. Когда необходимо сварить трубы при температуре 110-120°С, из-за особенностей материала (например, свариваемая сталь склонна трескаться в процессе) его предварительно подогревают. От разных особенностей материала зависит и температура подогрева изделия перед непосредственной сваркой.

Необходимость термообработки сварных швов.

Понятно, что термообработка сварных швов необходима уже по завершению процесса сварки. Но для чего? Дело в том, что при сварке изделия нагрев распределяется неравномерно по разным зонам. Это может привести к тому, что свойства сварного шва, в конечно счете, могут значительно снизиться и быть неоднородными по разным сторонам соединения.

Отметим, что эта особенность наблюдается всегда, независимо от толщины свариваемых изделий и прочих показателей.

Из-за такой особенности, в первую очередь, страдает прочность всего изделия, а также его устойчивость к коррозионным процессам, переносимость разных температур и пр. Все это может также привести к разрыву сварного шва. По этой причине сварщики по окончании работ проводят обязательную термическую обработку сварного шва.

Отметим, что термообработка швов используется при проведении работ в абсолютно любых сферах, будь-то нефтегазоперерабатывающая промышленность, энергетика и прочие.

Виды термической обработки сварных швов.

Выделяют два подвида термической обработки. Собственно обработка сварных швов, так называемая местная обработка. А также существует полная термообработка сварного изделия. Во втором случае полностью конструкция, которая подвергалась сварке, равномерно нагревается и потом охлаждается.

Обработка швов выполняется специалистами разными способами – это:

  • индукционный (наиболее распространенный);
  • радиационный (посредством газовых или электрических источников);
  • комбинированный и другие.

Кроме способов проведения обработки, выделяют и некоторые ее виды:

  • нормализация;
  • аустенизация;
  • термический отдых;
  • «улучшение» (комбинация двух видов: нормализации с высоким отпуском);
  • стабилизирующий отжиг.

Остановимся немного подробнее на отдельных видах. Во-первых, поговорим о нормализации. Это процесс термообработки с более быстрым охлаждением (что отличает его от обычного отжига). Отметим, что нормализация, обычно, проводится на открытом воздухе.

Следующий вид термообработки швов – высокий отпуск. Он наиболее популярен среди специалистов. Особенно часто его используют в условиях монтажа конструкций. Заметим, что данный процесс позволяет значительно понизить уровень остаточного напряжения – практически на 90 процентов. Высокий отпуск представляет собой процесс, при котором сварной шов выдерживается под температурой, достигающей триста-четыреста градусов. Процесс длится целый час. После нагревания шов довольно медленно охлаждают до трехсот градусов. И завершают этот процесс уже на воздухе.

Еще два вида обработки предназначены для хромоникелевых и нержавеющих сталей. Речь идет о стабилизирующем отжиге и аустенизации. Что касается последней, она представляет собой довольно сильный нагрев шва и последующее его охлаждение на воздухе.

Стабилизирующий отжиг – это нагревание шва до температуры, равной 970 градусам. Дальше изделие охлаждается также, как при аустенизации. Особенность этого способа термической обработки шва в том, что структура шва оптимизируется, что значительно снижает возможность того, что шов потрескается или подвергнется коррозионным процессам.

В заключение отметим, что выбор вида и способа термической обработки сварного шва напрямую зависит от свариваемого материала: для разных видов металлов подходят определенные способы и виды термообработки.

Улучшаемые стали

Улучшаемыми сталями называют среднеуглеродистые конструкционные стали, содержащие (0,3…0,5) % С, подвергаемые закалке от температуры 820…880 0С и последующему высокотемпературному отпуску при 550…680 0С. После такой термической обработки стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки.

Хромистые стали

Для средненагруженных деталей небольших размеров применяют хромистые стали марок 30Х, 38Х, 40Х, 50Х. С увеличением содержания углерода возрастает прочность, но снижается пластичность и вязкость.

Прокаливаемость сталей невелика и для ее увеличения легируется бором (0,002…0,005%). Критический диаметр стали 35ХР при закалке в воде составляет 30…45 мм, а в масле 20…30 мм.

Введение 0,1…0,2 % ванадия (40ХФА) повышает механические свойства хромистых сталей, главным образом вязкость, вследствие лучшего раскисления и измельчения зерна без увеличения прокаливаемости. Эти стали применяют для изделий, работающих при повышенных динамических нагрузках. Значение механических свойств некоторых улучшаемых сталей после термообработки приведены в таблице 10.

Хромомарганцевые стали

Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0С до минус 60 0С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.

Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей

Марка
стали
Прокаливается диаметр, мм sigmaв,
МПа
sigma0,2,
МПа
d,
%
y,
%
KCU,
МДж/м2
30X
40X
40XФА
40ХГТР
30ХГС
40ХН
30ХН3А
40ХН2МА
36Х2Н2МФА
38ХН3МФА
25-35
25-35
25-35
50-75
50-75
50-75
75-100
75-100
более 100
более100
900
1000
900
1000
1100
1000
1000
1100
1200
1200
700
800
750
800
850
800
800
950
1100
1100
12
10
10
11
10
11
10
12
12
12
45
45
50
45
45
45
50
50
50
50
0,7
0,6
0,9
0,8
0,4
0,7
0,8
0,8
0,8
0,8

Хромокремнемарганцевые стали

Они обладают высокой прокаливаемостью и механическими свойствами. К ним относятся стали марок 20ХГС, 25ХГС, 30ХГС. Стали хромансил применяют в виде листов и труб для ответственных сварных конструкций. При введении дополнительно никеля 1,4…1,8 % (30ХГНА) прочность стали повышается: sigmaв =1650 МПа, sigma0,2 = 1400 МПа.

Хромоникелевые стали

Обладают высокой прокаливаемостью, прочностью, хорошей вязкостью. Применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках.

Промежуточные тесты к теме 2.2

Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости. Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивления хрупкому разрушению. Рекомендуется вводить до 3 % Ni. При большем содержании получается много остаточного аустенита. Для тяжелонагруженных деталей с диаметром сечения до 70 мм используют стали марок 40ХН, 45ХН, 50ХН.

Хромоникелемолибденованадиевые стали

Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более).

В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 0С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).

Цель — термическая обработка

Cтраница 1

Цель термической обработки заключается в том, чтобы нагревом до определенной температуры, выдержкой при этой температуре и последующим охлаждением с заданной скоростью получить требуемое изменение строения и свойств металла. Следовательно, основными факторами термической обработки являются температура и время.  

Цель термической обработки заключается в том, чтсбы нагревом до определенной температуры, выдержкой при этой температуре и последующим охлаждением с заданной скоростью получить требуемое изменение строения и свойства металла. Следовательно, основными факторами термической обработки являются температура и время.  

Цель термической обработки сортового проката состоит в пони — жении твердости для улучшения обрабатываемости резанием и дав.

Термическое улучшение металла

Цель термической обработки инструментальных сталей состоит в том, чтобы создать в стали определенного состава структуру, обеспечивающую такие механические и физические свойства, в которых имеется необходимость при обработке и главным образом при эксплуатации инструмента. Термическая обработка оказывает непосредственное влияние на долговечность инструмента, так как свойства материала, из которого изготовлен инструмент, формируемые во время обработки, становятся окончательными.  

Целью термической обработки является придание стальным деталям таких свойств, которые обеспечивают их длительную работу без разрушения при определенных напряжениях.  

Целью термической обработки является изменение свойств сплава путем изменения его структуры в.  

Целью термической обработки для стабилизации размеров деталей, изготовленных из сплавов с а-структурой, является получение равновесной структуры. Термическая обработка заключается в отжиге при температурах, близких к температуре эвтектоидного превращения системы Ti — Н, и последующем медленном охлаждении с печью. При этих условиях эвтектоидный распад происходит наиболее полно, водород выделяется в виде гидрида; одновременно распадается нестабильная — р-фаза.  

Целью термической обработки во всех случаях является улучшение свойств металла, требуемых от него в данных конкретных условиях. Например, от инструментальной стали при механической обработке требуется хорошая обрабатываемость резанием; для этого прокатанную инструментальную сталь отжигают.  

Целью термической обработки является изменение свойств металла путем изменения его структуры.  

Целью термической обработки является изменение свойств металлов и сплавов путем изменения их структуры. Всякая термическая обработка включает в себя операцию нагрева, выдержку при заданной температуре i охлаждение. Все операции термической обработки осуществляются по заршее разработанной технологии. Термическую обработку можно считать эффективной тогда, когда достигнутые в результате ее проведения свойства металлов или сплавов сохраняются в течение длительного времени.  

Целью термической обработки является получение заданных физико-механических свойств материала зубчатых колес под действием различных температур и скоростей охлаждения, вследствие чего изменяется структура; при химико-термической обработке предварительно изменяется химический состав поверхностного слоя. Общая характеристика процессов термической обработки зубчатых колес приведена в табл. 20.1. Предварительная термическая обработка заготовок ( отжиг, нормализация) применяется для получения микроструктуры, обеспечивающей оптимальную обрабатываемость при механической обработке.  

Целью термической обработки является получение необходимой структуры, а следовательно, и физико-механических или иных свойств металлов и сплавов. По степени воздействия на свойства металлов и сплавов термическая обработка значительно эффективней других воздействий, например механической обработки.  

Целью термической обработки стали является изменение ее структуры и свойств. При термической обработке сталь нагревают обычно до температур, при которых образуется аустенит, и охлаждают. При этом происходят фазовые превращения, переход менее устойчивой структуры, полученной предшествующей обработкой, в более устойчивую и равновесную.  

Целью термической обработки контрольных образцов является получение в образцах магнитных свойств, приведенных в табл. 6 — 16 настоящего стандарта.  

Страницы:      1    2    3

1. Какое из перечисленных свойств металлов обеспечивает возможность их

По способу охлаждения различают следующие виды закалки.

Закалка в одной среде

Такая закалка проще по выполнению, но не для любой стали и не для любых изделий ее можно применять.

Быстрое охлаждение в большом интервале температур изделий переменного сечения способствует возникновению температурной неравномерности и больших внутренних напряжений, называемых термическими.

Помимо термических напряжений, при превращении аустенита в мартенсит создаются дополнительно так называемые структурные напряжения, связанные с тем, что превращение аустенита в мартенсит происходит с увеличением объема.

Если деталь сложной формы или переменного сечения, то увеличение объема проходит неравномерно и вызывает возникновение внутренних напряжений.

Наличие больших напряжений может вызвать коробление изделия, поводку, а иногда и растрескивание, если величина внутренних напряжений превзойдет предел прочности.

Чем больше углерода, тем больше объемные изменения и структурные напряжения, тем больше опасность возникновения трещин.

Сталь с содержанием углерода более 0,8% закаливают в одной среде, если изделия простой формы (шарики, ролики и т.д.). В противном случае предпочитают закалку либо в двух средах, либо по способу ступенчатой закалки.

Закалка в двух средах

Этот способ нашел широкое применение для закалки инструмента из высокоуглеродистой стали.

Состоит он в следующем:

  1. деталь вначале замачивают в воде и охлаждают до температур 500—550°,

  2. затем быстро переносят в масло, где оставляют до полного охлаждения.

Ступенчатая закалка

При этом способе деталь быстро охлаждается погружением в соляную ванну с температурой 300—250°. Выдержка при этой температуре в течение 1,5—2 мин. должна обеспечить выравнивание температур по всему сечению изделия, устраняя тем самым термические внутренние напряжения. Последующее охлаждение производят на воздухе.

В качестве охлаждающей среды используют расплавленные соли, селитры, легкоплавкие металлы.

Ступенчатая закалка уменьшает внутренние напряжения, коробление и возможность растрескивания деталей.

Недостатки ступенчатой закалки

Недостаток этого вида закалки в том, что охлаждение в горячих средах не может обеспечить большую скорость охлаждения в интервале 400—600°.

В связи с этим ступенчатую закалку для углеродистой стали можно применять для изделий небольшого сечения (диаметр до 10 мм, например, сверла).

Для легированных сталей, имеющих небольшие значения критической скорости закалки, ступенчатая закалка применима к изделиям большего сечения.

Закалка с подстуживанием

При таком способе деталь вынимают из печи и перед погружением в охлаждающую жидкость некоторое время выдерживают на воздухе. Время выдержки на воздухе должно быть таким, чтобы не произошел

распад на структуру перлита или сорбита. Это время определяется практикой закалки.

Подстуживание уменьшает внутренние напряжения и коробление и применяется для тонких и длинных деталей.

Поверхностная закалка стали

От некоторых деталей в эксплуатации требуется высокая поверхностная твердость при сохранении достаточно вязкой сердцевины, например зуб шестерни, шейка коленчатого вала и др.

В этом случае сталь сознательно закаливают на небольшую глубину. Существует несколько методов поверхностной закалки стали.

Поверхностная закалка при нагреве ацетилено-кислородным пламенем

Нагрев изделия производится ацетилено-кислородным пламенем. Пламенная горелка (рис. 67), движущаяся вдоль изделия с определенной скоростью, нагревает его поверхность.

Вслед за горелкой с той же скоростью движется трубка, подающая воду, с помощью которой производится охлаждение изделия.

Глубина прогрева и температура нагрева регулируются скоростью перемещения горелки и расстоянием горелки от изделия.

Поверхностная закалка токами высокой частоты

Нагрев изделий токами высокой частоты вызывает разогрев поверхностного слоя изделия.

Это объясняется тем, что токи высокой частоты распространяются с неравномерной плотностью по сечению. Чем больше частота тока, тем на меньшую глубину изделия токи проникают.

Благодаря этому возникает большая плотность тока у поверхности изделия, вызывающая весьма быстрый разогрев поверхностных слоев металла.

Этот метод имеет ряд преимуществ: высокую производительность, достаточную легкость регулирования глубины закаленного слоя, получение большей твердости, чем при обычных методах закалки, отсутствие окалины и коробления.

Применяемый для этой цели электрический ток получают от специальных генераторов, дающих переменный ток с частотой до 10 млн. гц (т.е. перемен направления тока в секунду). Ток городской сети имеет частоту 50 гц.

Нагрев изделия осуществляется индуктором, по которому проходят токи высокой частоты и большой силы.

Индуктор наводит (индуктирует) токи в изделии, помещенном внутри него (рис. 68).

Индуктор изготовляют из полых медных трубок, внутри которых циркулирует охлаждающая вода, поэтому он сам не разогревается за тот короткий промежуток времени, за который деталь успевает нагреться до необходимой температуры.

Форма индуктора должна точно повторить форму изделия, только тогда изделие закалится да одну и ту же глубину по всему сечению. Затруднения бывают при сложной форме детали, что ограничивает применение этого метода.

Охлаждение нагретой детали осуществляется чаще всего либо дополнительным дождевым устройством, либо водой, циркулирующей внутри индуктора.

В связи с тем что новый тип детали требует изготовления нового индуктора, этот метод целесообразно применять при наличии однотипных деталей в массовом или крупносерийном производстве.

Холодную и горячую обработку давлением различают не по принятой температуре обработки, а по соотношению между температурой обработки и температурой рекристаллизации.

Если обработка давлением проводится при температуре ниже температуры рекристаллизации (что сопровождается упрочнением металла), она называется холодной. Если же обработка проводится при температуре выше рекристаллизационной, возникающее при деформации упрочнение будет сниматься процессом рекристаллизации. Такая обработка давлением называется горячей. Деформирование стали при температуре 600°С должно расцениваться как горячая обработка, а при температуре 350°С — как холодная.

Важнейшая особенность горячей деформации в том, что она осуществляется в состоянии повышенной пластичности металла, т.е. более легкой его обрабатываемости.

Горячая пластическая деформация металлов и сплавов чрезвычайно распространена (прокатка, прессование, ковка, штамповка и др.)

В производственных условиях, чтобы обеспечить достаточную скорость рекристаллизационных процессов, применяют более высокие температуры.

П р о м е ж у т о ч н ы е т е с т ы к теме 2.2

Если при температуре 600°С для завершения рекристаллизации стали требуется 2ч, при температуре 700°С для этого достаточно 5мин.

Ниже приведены температуры, при которых в производственных условиях производится рекристаллизационный отжиг заготовок и горячая обработка металла давлением.

Металл Температура, °С
рекристаллизационного отжига горячей обработки давлением
Сталь 600 — 700 1300 (1100 — 800)
Медь 450 — 500 800 — 600
Латунь 400 — 500 750 — 600
Алюминии 250 — 350 450 — 350
Молибден 1400 — 1600 2000 — 1400

ОБЪЕКТ ИЗУЧЕНИЯ

Объекты изучения: действующая модель вальцовой станции и образцы низкоуглеродистой стали (проволоки) в состояния поставки, после прокатки с различной степенью обжатия и после рекристаллизационного отжига.

Дата добавления: 2015-05-10; просмотров: 2027; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *